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A B S T R A C T   

Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a 
defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the 
pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its 
impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using pub-
lished Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species 
richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without 
infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence 
networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and 
network robustness, crucial for colonization resistance. We examined network robustness by altering its con-
nectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our 
findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial di-
versity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of 
infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The 
network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, 
indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the 
network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network 
robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon 
node addition hints that infection with A. phagocytophilum might lower ticksʼ resistance to colonization, poten-
tially facilitating further microbial invasions. We conclude that the compromised colonization resistance 
observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick 
populations.  
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1. Introduction 

Ticks are obligate hematophagous ectoparasites that transmit in-
fectious agents, including bacteria (such as Coxiella burnetti, Rickettsia 
helvetica, Borrelia burgdorferi, and Anaplasma marginale), viruses (like 
severe fever with thrombocytopenia syndrome virus, tick-borne en-
cephalitis virus, and Crimean-Congo haemorrhagic fever virus), and 
parasites (such as Babesia microti and Theileria orientalis) to terrestrial 
vertebrates (de la Fuente et al., 2017). Once acquired from an infected 
host, these tick-borne pathogens (TBPs) encounter several barriers, such 
as the peritrophic membrane, the dityrosine network, and tick immunity 
(Kurokawa et al., 2020; Fogaça et al., 2021; Kitsou et al., 2021). In 
addition to pathogens, ticks also carry non-pathogenic microorganisms 
(Bonnet et al., 2017), which include commensal microbes acquired from 
the environment, as well as transovarially-transmitted endosymbionts 
(Binetruy et al., 2020; Hussain et al., 2022), collectively referred to as 
microbiota (sous rature) (Cabezas-Cruz, 2023). 

These non-pathogenic microorganisms gradually assemble over 
time, progressing from a state of low diversity to form richer multispe-
cies communities that can have a substantial effect on the structure, 
organization, and function of the tick microbiota (Díaz-Sánchez et al., 
2019; Obregón et al., 2019; Estrada-Peña et al., 2020a). In addition, 
non-pathogenic microorganisms may also play a role in driving the 
transmission of TBPs, which has significant implications for both human 
and animal health (Narasimhan et al., 2014; Gall et al., 2016; Wei et al., 
2021; Wu-Chuang et al., 2021). There is empirical evidence for the 
presence of colonization resistance within the tick microbiota. Coloni-
zation resistance is the phenomenon where established microbial com-
munities prevent the invasion and establishment of new, often 
pathogenic, species (Mullineaux-Sanders et al., 2018; Ducarmon et al., 
2019; Stacy et al., 2021; Karita et al., 2022). For example, in Derma-
centor andersoni ticks, the resident microbiota influences the acquisition 
levels of certain pathogens (Gall et al., 2016). Particularly, Rickettsia 
bellii, a non-pathogenic microorganism associated with D. andersoni, 
negatively correlates with Anaplasma marginale acquisition, indicating 
an antagonistic interaction (Gall et al., 2016). Additionally, experiments 
with Haemaphysalis longicornis ticks show that adult ticks emerging from 
nymphs treated with antibiotics exhibit a disrupted microbiota (Wei 
et al., 2021). These adult ticks had a higher infection rate of Babesia 
microti (44.7%) compared to control ticks (24.2%) (Wei et al., 2021), 
indicating that a healthy microbiota may play a crucial role in managing 
pathogen loads. This highlights that colonization resistance serves as a 
natural barrier against the establishment of TBPs in ticks. 

Tick-transmitted bacterial pathogens likely evolved mechanisms to 
overcome colonization resistance by resident microbiota. For example, 
Borrelia burgdorferi colonization in I. scapularis increases the expression 
of several tick gut genes including pixr. Abrogation of PIXR function 
results in alterations in the gut microbiome, metabolome, and immune 
responses affecting the spirochete entering the tick gut (Narasimhan 
et al., 2014). Other mechanisms might involve triggering the expression 
of tick proteins with anti-microbial activity, such as Ixodes scapularis 
antifreeze glycoprotein (IAFGP), perturbing the tick gut microbiota 
(Abraham et al., 2017). This alteration affects the capacity of bacteria to 
form biofilms, influences the integrity of the peritrophic matrix, and 
reduces barriers to Anaplasma phagocytophilum colonization in the tick 
(Abraham et al., 2017). Overall, these mechanisms show an adaptation 
by TBPs to manipulate the tick microbial environment, effectively 
reducing colonization resistance and allowing for their proliferation and 
transmission. However, it remains unclear whether TBP-mediated 
modulation of tick microbiota results in community traits associated 
with reduced colonization resistance. 

Altered microbial interactions and a weaker network structure have 
been proposed to lower colonization resistance (Shade et al., 2012). 
Disruptions in how these microbial communities are structured may 
reduce their overall stability and resilience, possibly affecting their ca-
pacity to fend off pathogens (Shade et al., 2012). A recent study by 

Maitre et al. (2022) found that an R. helvetica infection in the tick Ixodes 
ricinus significantly diminishes the diversity and connectivity within the 
tickʼs microbiota network, indicating a decrease in colonization resis-
tance due to the infection Cohen and Havlin (2009). 

In this study, we investigated colonization resistance of I. scapularis 
nymph microbiota infected with A. phagocytophilum. Anaplasma phag-
ocytophilum is an obligate intracellular bacterium transmitted by ticks, 
causing human granulocytic anaplasmosis (Kocan et al., 2015). We hy-
pothesized that alteration of the tick microbiota by A. phagocytophilum 
results in reduced colonization resistance, and diminished ability of the 
resident microbiota in the tick gut to prevent colonization by other 
microorganisms, including pathogens. To assess this hypothesis, we used 
published 16S rRNA amplicon sequencing data (Abraham et al., 2017) to 
compare the community assembly and robustness of 
A. phagocytophilum-infected and uninfected ticks, using a network 
approach. Co-occurrence networks (Estrada-Peña et al., 2020b; 
Mateos-Hernández et al., 2020, 2021, 2023; Maitre et al., 2023), with 
nodes representing individual microbial taxa and edges representing 
their interactions (Faust and Raes, 2012; Röttjers and Faust, 2018), were 
used to assess the impact of A. phagocytophilum on the tick microbial 
communities. Our findings indicate that infection with 
A. phagocytophilum reduced network robustness, potentially compro-
mising colonization resistance. Interestingly, we observed a robustness 
recovery with the addition of new nodes in the 
A. phagocytophilum-infected network, suggesting that after infection, 
further microbial invasions may recover colonization resistance. These 
results are relevant for understanding the microbiota dynamics and re-
sponses to pathogen infections in ticks. 

2. Materials and methods 

2.1. Original datasets 

We evaluated the effect of bacterial infection on tick microbiota 
using publicly available datasets (Fig. 1). The selected studies utilized 
barcoded universal primers to amplify the V4 hypervariable regions of 
the 16S rRNA gene, followed by sequencing using the Illumina MiSeq 
system. The raw data were obtained from Abraham et al. (2017). In their 
study, the authors examined the changes in gut microbiota composition 
of I. scapularis nymphs fed on mice (C3H/SCID), which were experi-
mentally infected with A. phagocytophilum (strain NCH-1). DNA was 
extracted from the guts of individual fed nymphs. The V4 variable region 
of the bacterial 16S rRNA was amplified from the genomic DNA of each 
sample using 12-base barcoded primer sets. In our study, we referred to 
A. phagocytophilum (Ap) tick groups as Ap-infected (n = 22) and 
Ap-uninfected (n = 10). 

2.2. Processing of original raw sequences 

We conducted taxonomic profiling of the 16S rRNA gene sequence 
datasets from the previously referenced studies. The sequences were 
sourced from the SRA repository: PRJNA353730. For sequence data 
processing, we used the pipelines in Quantitative Insights Into Microbial 
Ecology 2 Software (QIIME2) (version 2021.4.0) (Bolyen et al., 2019), as 
described in our previous publications (Estrada-Peña et al., 2020b; 
Wu-Chuang et al., 2023). In summary, the demultiplexed fastq files were 
denoised utilizing the DADA2 algorithm (version 1.18.0) as described by 
Callahan et al. (2016). Following this, all amplicon sequence variants 
(ASVs) were aligned employing the MAFFT tool (Katoh, 2002) through 
the q2-alignment interface. A phylogenetic tree was then generated 
using FastTree (Price et al., 2010) via the q2-phylogeny plugin. Diversity 
metrics, both phylogenetic and non-phylogenetic, were calculated based 
on a rarefied table of ASV abundances using the 
core-metrics-phylogenetic function within the q2-diversity plugin. 
Taxonomic annotation of the ASVs was carried out using the q2-fea-
ture-classifier’s classify-sklearn naive Bayes taxonomy classifier, 
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referencing the 16S rRNA SILVA database (release 132) (Quast et al., 
2013) for alignment. 

2.3. Diversity indices 

To test for differences in bacterial diversity between Ap-uninfected 
and Ap-infected samples, we conducted analyses of alpha and beta di-
versity. For alpha diversity, we used the metrics “observed features” 
(DeSantis et al., 2006) and Faithʼs phylogenetic diversity index (Faith, 
1992). Evenness was assessed using Pielouʼs evenness index (Pielou, 
1966). The observed features metrics is the number of unique features 
present in a sample (DeSantis et al., 2006) and Faithʼs phylogenetic di-
versity index measures the cumulative evolutionary history represented 
in the community (Faith, 1992). Pielouʼs evenness index measures how 
evenly individuals are distributed among species within a community, 
indicating the balance of species abundances relative to species richness 
(Pielou, 1966). On the other hand, beta diversity measures the diversity 
between samples and examines the similarity in composition between 
analyzed communities. Beta diversity was evaluated using the principal 
coordinates analysis (PCoA), based on the Bray-Curtis dissimilarity 
index (Bray and Curtis, 1957). Unique and shared taxa among the 
conditions were visualized using Venn diagrams created with an online 
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) and the 
Upset package implemented in R v.4.3.1 (R Core Team, 2023). Analyses 
were performed using the RStudio Integrated Development Environ-
ment (IDE) v.2023.03.0-daily+82. pro2 (RStudio Team, 2020). 

2.4. Inference of bacterial co-occurrence networks 

Co-occurrence networks were employed to analyze bacterial inter-
action within microbial communities, both in Ap-uninfected and Ap- 

infected groups. These networks visually depict the relationships 
among interacting microbes, where an edge connects two bacteria if 
their abundances demonstrate significant correlation across samples 
under the same condition or treatment. The networks were constructed 
with taxonomic data tables at both family and genus levels (Supple-
mentary file S2: Table S1), using the Sparse Correlations for Composi-
tional data (SparCC) algorithm (Friedman and Alm, 2012), as 
implemented (Supplementary file S1) in the SpiecEasi R package (Kurtz 
et al., 2015). Only significant correlations between taxa, both negative 
and positive (SparCC, weight ≥ 0.5 or ≤ − 0.5) were represented as 
edges. Furthermore, we also analyzed the strongest correlations (SparCC 
≥ 0.9 or ≤ − 0.9). Network metrics used in this study (Table 1) were 
computed using Gephi 0.9.5 (Bastian et al., 2009), an open-source 
software that transforms co-occurrence data in a graph. 

2.5. Network comparisons 

To compare networks, a statistical estimation analysis was con-
ducted using Network Construction and Comparison with Microbes 
(NetCoMi) package (Peschel et al., 2021) in R v.4.3.1 (R Core Team, 
2023) (Supplementary file S1), and performed using RStudio (RStudio 
Team, 2020). NetCoMi offers tools for networks alignment, which in-
volves matching nodes (microbial taxa) and edges (co-occurrence re-
lationships) between networks based on their topological properties 
helping to identify corresponding features between them, even if they 
are not identical. To assess similarities in the distribution of local cen-
trality measures across nodes, i.e. degree-, betweenness-, closeness-, and 
eigenvector centrality (Table 1), between two networks, we computed 
the Jaccard index for each centrality measure. The Jaccard index mea-
sures the similarity between sets of “most central nodes”, i.e. nodes with 
a centrality value above the empirical 75th quartile, in the two 

Fig. 1. Experimental design. The data used in this study were downloaded from the SRA database and the raw sequences were processed. Bacterial composition and 
abundance were analyzed. The alpha- and beta diversity of the two datasets were compared, and co-occurrence networks were inferred to assess the structure of the 
microbial communities. 
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networks. It expresses the similarity of the sets of most central nodes and 
the sets of hub taxa (highly connected nodes) between the two networks. 

The Adjusted Rand Index (ARI) was also calculated to test the 
dissimilarity of clustering in the networks. Negative and positive ARI 
values range from − 1 to 1, where values below 0 indicate lower than 
random clustering, values above 0 indicate higher than random clus-
tering, a value of 1 corresponds to identical clustering, and a value of 
0 indicates dissimilar clustering (Peschel et al., 2021). 

Additionally, the Core Association Network (CAN) analysis (Röttjers 
et al., 2021), was performed using the Anuran software, implemented in 
Python environment (https://github.com/ramellose/anuran). The CAN 
analysis identifies conserved patterns across networks (Table 1), using a 
core prevalence threshold of 0.8. This approach utilizes null models to 
generate random networks and assesses the properties of these net-
works, allowing the identification of patterns in groups of networks. Our 
hypothesis was that CAN does not differentiate the microbial networks 

of Ap-uninfected and Ap-infected I. scapularis nymphs, indicating that 
infection does not lead to altered core associations in the microbial 
network. CAN visualization was carried out using Gephi 0.9.5 (Bastian 
et al., 2009). 

2.6. Network robustness analysis 

We evaluated the robustness of microbial co-occurrence networks to 
perturbation by measuring the impact of removing or adding nodes on 
network connectivity. To assess this, we simulated the proportion of 
node removal required to reach a loss in connectivity of 0.80 for each 
network using random or directed attacks. For the directed attack, we 
employed three strategies: betweenness centrality, degree centrality, 
and cascading. In the betweenness centrality approach, we removed 
nodes with the highest betweenness centrality values. In the degree 
centrality approach, we removed nodes with the highest degree 

Table 1 
Key network metrics and their ecological interpretations in microbial community analysis.  

Measure Definition Ecological interpretation 

Network diameter The network diameter measures the shortest path between the two most 
distant nodes in a network. It provides insight into the maximum number of 
edges required to connect any two nodes. 

In microbial networks, a large diameter might suggest that some microbial 
interactions are spread over larger “distances”, implying less direct 
interaction between certain microbe taxa, potentially due to ecological or 
functional divergence. 

Modularity Modularity assesses the strength of network division into modules or 
communities. It quantifies the extent to which nodes in the same module are 
more densely connected to each other compared to nodes in different 
modules. 

High modularity in a microbial network suggests that the network is divided 
into distinct communities or clusters, each possibly representing different 
ecological niches or functional groups within the microbiome. 

Average degree The average degree of a network determines the average number of edges 
per node. It reflects the overall connectivity of the network by measuring 
how many connections each node has on average. 

In a microbial context, a higher average degree suggests a community where 
numerous microbe taxa interact with several others, which might imply a 
robust ecological network where many species are involved in maintaining 
community structure and function. 

Weighted degree The weighted degree takes into account the sum of edge weights connected 
to a node. It considers the strength or correlation intensity associated with 
each edge, providing a more nuanced view of node connectivity. 

Considering the intensity or strength of connections, this metric provides 
insights into which microbe taxa play central roles based on the strength of 
their interactions. 

Clustering coefficient The clustering coefficient captures the tendency of nodes to form clusters or 
tightly interconnected groups. It measures the extent to which a nodeʼs 
neighbors are connected, indicating the presence of local clustering or 
community structures within the network. 

A high clustering coefficient in microbial networks indicates a tendency of 
microbe taxa to form tightly knit groups, suggesting the presence of 
cooperative clusters or consortia. 

Number of 
communities 

Partitioning of nodes (representing entities or elements) within a network 
into distinct groups or communities based on their structural connectivity. 

In microbial networks, each community might represent a different 
ecological niche or a group of microbe taxa performing similar functions. 

Number of triangles The number of triangles that exist within a given network. A triangle in a 
network is a set of three nodes that are all connected. 

In microbial communities, triangles (three microbe taxa all interacting with 
each other) might suggest robust sub-communities that could stabilize the 
network against perturbations by providing redundant paths for interaction. 

Largest Connected 
Component (LCC) 

The LCC represents the main connected structure of the network. It identifies 
the largest subset of nodes that are mutually reachable through edges. 

The size of the LCC in a microbial network indicates the core structure of 
connectivity and can reflect the main functional and structural backbone of 
the community. 

Average Path Length 
(APL) 

The average path length measures the efficiency of information flow within 
the network. It calculates the average number of steps required to travel 
between any two nodes in the network, indicating how quickly information 
can spread through the network. 

In microbiological networks, the average path length relates to the efficiency 
of material or signal transfer across the network. 

Degree centrality Degree centrality measures the number of edges connected to a node, 
indicating the importance or influence of a node based on the number of 
connections it has. 

In microbial networks, a high degree centrality indicates a species with 
numerous interactions, which could suggest a generalist species that engages 
with many different partners or a keystone species that plays a critical role in 
maintaining community structure and stability. 

Betweenness 
centrality 

Betweenness centrality quantifies the extent to which a node lies on the 
shortest paths between other nodes. It identifies nodes that act as 
intermediaries or bridges, facilitating communication in the network. 

In ecological terms, species with high betweenness centrality may be those 
that link otherwise disparate groups of organisms, facilitating important 
ecological processes such as energy or material transfer across the 
community. 

Closeness centrality Closeness centrality measures how close a node is to all other nodes in the 
network. It reflects the efficiency of information flow from a node to other 
nodes, considering the shortest path lengths. 

Species with high closeness centrality can quickly spread effects (either 
beneficial such as nutrients or detrimental such as pathogens) throughout 
the network, indicating their efficiency in influencing the community 
dynamics. 

Eigenvector 
centrality 

Eigenvector centrality considers both the local and global importance of a 
node. It assigns a centrality score to a node based on the centrality of its 
neighboring nodes, indicating its overall influence. 

In a microbial community, such a metric would highlight species that are not 
only well-connected but also connected to other significant species, 
reinforcing their role in maintaining or disrupting complex community 
structures. 

Hub taxa Hub taxa are nodes in a network that exhibit high connectivity or act as 
hubs, having numerous connections with other nodes. They play a crucial 
role in maintaining network structure and information flow. 

These taxa may represent species that provide essential ecosystem services, 
such as keystone species in ecological networks or core microbiota in host- 
associated microbial communities, whose loss might lead to drastic changes 
in network structure and function. 

Core Association 
Network (CAN) 

This network model identifies and visualizes the core set of interactions or 
associations between nodes (taxa) that are consistently present across 
multiple samples or conditions. 

The CAN is useful for highlighting interactions that are critical to community 
structure and function, regardless of external conditions or perturbations.  
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centrality values. In the cascading approach, we first removed nodes 
with the highest betweenness centrality values, recalculating between-
ness centrality after each node removal. To perform the network 
robustness analysis, we utilized the Network Strengths and Weaknesses 
Analysis (NetSwan) package (Lhomme, 2015) in R v.4.3.1 (R Core Team, 
2023) (Supplementary file S1), performed using the RStudio (RStudio 
Team, 2020). 

Additionally, we conducted a node addition analysis based on the 
method described by Freitas et al. (2020) in R v.4.3.1 (R Core Team, 
2023) (Supplementary file S1), and performed using the RStudio 
(RStudio Team, 2020). In this analysis, new nodes were randomly 
selected and connected to the existing network. We then calculated the 
size of the largest connected component (LCC) and the average path 
length (APL) (Table 1). To obtain a more accurate estimate of the net-
workʼs robustness, we repeated the simulation with different sets of 
nodes, adding 100, 300, 500, 700, and 1000 nodes. The obtained values 
were plotted using GraphPad Prism 8.0.1 to visualize the results. 

2.7. Statistical analysis 

Differences in alpha diversity between groups were assessed using 
the Kruskal-Wallis test (P < 0.05) in QIIME2 (Bolyen et al., 2019). The 
Bray-Curtis dissimilarity index values were compared between groups 
using a PERMANOVA test (P < 0.05). A PERMANOVA test (P < 0.05) 
was performed to analyze beta dispersion. Additionally, we calculated 
beta dispersion (variance) using the betadisper function from the Vegan 
package in R v.4.3.1 (R Core Team, 2023) (Supplementary file S1), and 
performed using RStudio (RStudio Team, 2020). 

The differences in bacterial taxa abundance between the Ap- 
uninfected and Ap-infected groups were performed with the ANOVA- 
Like Differential Expression (ALDEx2) method (Fernandes et al., 2013) 
implemented in R v.4.3.1 (R Core Team, 2023), and performed using 
RStudio (RStudio Team, 2020). Relative abundance was measured as 
centered log-ratio (clr) transformation which uses the geometric mean 
of the read counts in the sample. The advantage of the 
clr-transformation is that it makes the quantification scale-free and 
therefore comparable between conditions (Fernandes et al., 2013). The 
resulting data were used to construct the heatmap with the heatmap.2 
function (Supplementary file S1), implemented in R v.4.3.1 (R Core 
Team, 2023), and performed using RStudio (RStudio Team, 2020). The 
comparisons were performed with Welchʼs t-test (P ≤ 0.05). 

To test the similarity in the distribution of local centrality measures 
between two networks, two P-values, namely P (J ≤ j) and P (J ≥ j), were 
computed for each local centrality measure (Real and Vargas, 1996). 
These P-values represent the probability that the observed Jaccard index 
(J) value is either “less than or equal to” or “greater than or equal to” the 
expected Jaccard value at random (j). Differences were considered sig-
nificant when P < 0.05. 

The standard error for loss of connectivity was calculated, consid-
ering variability, using a threshold of 0.975. Additionally, the node 
addition analysis employed Wilcoxon signed-rank tests to determine if 
the mean size of the LCC and the APL differed significantly from 0. The 
P-values from these tests were adjusted using the Benjamini-Hochberg 
(BH) procedure to control for multiple comparisons. Additionally, 
bootstrapping was performed to obtain confidence intervals for the 
variables. Significance was determined at a threshold of P < 0.05. 

3. Results 

3.1. Impact of A. phagocytophilum on bacterial diversity and composition 
of tick microbiota 

The results indicated that there were no significant differences in 
alpha diversity (Fig. 2A) and beta diversity (Fig. 2B) between the Ap- 
uninfected and Ap-infected conditions (Kruskal-Wallis, P > 0.05; PER-
MANOVA, P > 0.05). In terms of microbiota composition, a total of 409 

bacterial taxa were identified (Supplementary file S2: Table S2). Of 
these, 4 bacterial taxa (0.98%) were exclusive to the Ap-uninfected 
group, 29 bacterial taxa (7.10%) were exclusive to the Ap-infected 
group, and 376 bacterial taxa (91.9%) were shared between the two 
groups (Fig. 2C). Next, we conducted a differential abundance analysis 
to identify changes in specific taxa between Ap-uninfected and Ap- 
infected groups. We observed a significantly different abundance of 
three taxa, Lactoccus, Pantoea and Mycobacterium, across the two con-
ditions (Fig. 2D). 

3.2. Impact of A. phagocytophilum on bacterial community assembly 

We evaluated the impact of A. phagocytophilum infection on tick 
bacterial communities using co-occurrence networks. Visual examina-
tion of the networks (SparCC, weight ≥ 0.5 or ≤ − 0.5) of Ap-uninfected 
(Fig. 3A) and Ap-infected (Fig. 3B) revealed topological differences. Out 
of 409 bacterial taxa that were found in the microbiota, there were 377 
(92.2%) nodes in the Ap-uninfected network and 265 (64.8%) nodes 
were present in the Ap-infected network (Table 2). Analysis of the to-
pological features of the networks revealed a higher number of nodes 
and edges in the Ap-uninfected network (Fig. 3A, Table 2) than in the 
Ap-infected network (Fig. 3B, Table 2). Ap-infected network presented a 
reduction of 30% (265 out of 377) of the number of nodes and 82% (826 
out of 4605) of the number of edges compared with Ap-uninfected 
network (Table 2). Furthermore, in both network conditions, positive 
interactions between the nodes were predominant (Table 2). Upon 
infection, the microbial assembly underwent reorganization, resulting in 
a decrease in the modularity and an increase in the number of distinct 
communities (Table 2). There were 243 taxa (61%, total 399) shared 
between the two networks, while 134 (33.6%) and 22 (5.4%) were 
unique to the Ap-uninfected and Ap-infected networks, respectively 
(Fig. 3C, Table S3). 

The Jaccard index was used to evaluate the similarities in selected 
local network centrality measures between Ap-uninfected and Ap- 
infected networks. The results showed that the Jaccard index of all 
local centrality measures was significantly lower (P ≤ Jacc) than ex-
pected by random for the comparisons of Ap-uninfected vs Ap-infected 
networks (Table 3). The ARI similarity index was employed to assess 
clustering differences between networks. The ARI supported the low 
similarity in clustering between Ap-infected and Ap-uninfected net-
works (ARI = − 0.001, P = 0.891). The Core Association Network (CAN) 
revealed 40 core-interacting nodes (Fig. 3D, Supplementary file S2: 
Table S4), which represents a reduction of 89.4% and 85.0% in the 
number of nodes in Ap-uninfected and Ap-infected networks, respec-
tively. This supported that infection causes a major impact in the tick 
microbial network, but also that a core set of interactions critical to 
community structure and function remains regardless of perturbation. 
Among these core-associated nodes, only positive interactions were 
found. 

Finally, we examined the presence of strong correlations between 
network nodes. In the Ap-uninfected network, we identified 34 nodes 
with the strongest connections (Fig. 3E), and in the Ap-infected network 
18 nodes were identified as the strongest connected (Fig. 3F). In the Ap- 
infected network, the nodes formed a major cluster, but this pattern was 
not observed in the Ap-uninfected network. Overall, these findings 
suggest significant alterations in the assembly of tick bacterial com-
munities due to the presence of pathogens, which is supported by the 
observed topological differences, dissimilarity in local network cen-
trality measures, and network clustering. 

3.3. Impact of A. phagocytophilum on the network robustness 

One crucial aspect of networks is their ability to withstand pertur-
bations, including the removal or addition of nodes. In terms of con-
nectivity loss, the removal of nodes through direct attack had a more 
significant impact on all networks compared to random attacks 

L. Abuin-Denis et al.                                                                                                                                                                                                                           



Current Research in Parasitology & Vector-Borne Diseases 5 (2024) 100177

6

Fig. 2. Impact of A. phagocytophilum infection on microbiome diversity. A Comparison of the alpha diversity by observed features (Kruskal-Wallis test, P = 0.31), 
Pielouʼs evenness index (Kruskal-Wallis test, P = 0.90) and Faithʼs index (Kruskal-Wallis test, P = 0.46). B Comparison of beta diversity for Ap-uninfected vs Ap- 
infected using the Bray-Curtis dissimilarity index (PERMANOVA, F = 32.84, P = 0.087, stress = 0.1507). Small circles and triangles in the principal coordinate 
analysis (PCoA) plot represent samples; ellipses indicate 95% confidence intervals. ANOVA test was performed and showed that the beta dispersion of the samples is 
not significantly different (P = 0.849). C Venn diagram showing the number of unique or shared taxa between Ap-uninfected and Ap-infected ticks. D Dendrogram 
heatmap resulting from the heatmap.2 functions implemented in R (R Core Team, 2023), and performed in RStudio IDE (RStudio Team, 2020). The taxa were 
clustered based on relative abundance (calculated as clr-transformed values). Each column represents the clr-values for bacterial taxa per sample and group. Lines 
represent bacterial taxa with significant changes between the two datasets. Color represents the clr-value. 

Fig. 3. Networks representing community assemblies. Co-occurrences networks of Ap-uninfected (A) and Ap-infected (B). Nodes correspond to taxa (family or genus 
level), and connecting edges indicate a correlation between them. Only nodes with at least one significant correlation are represented. Node colors are based on 
modularity class metric and equal color means modules of co-occurring taxa. Node sizes are based on eigenvector centrality. Edges represent positive (blue) or 
negative (red) correlations (SparCC ≥ 0.5 or ≤ − 0.5). C Number of unique or shared taxa in the Ap-uninfected and Ap-infected network. D Core Association Network 
(CAN) between Ap-uninfected and Ap-infected groups. E, F Strong correlation networks (weight > 0.9 or < − 0.9) across the Ap-uninfected (E) and Ap-infected 
networks (F). Nodes correspond to taxa (family or genus level) and connecting edges indicate significant correlation between them. Edges represent positive 
(green) correlations; edge widths are proportional to correlation coefficients. 
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(Fig. 4A). Cascading removal had the most profound effect on network 
connectivity (Fig. 4B). In the Ap-infected network, 0.05 fraction of nodes 
removed was enough to achieve a connectivity loss of 0.80 (Fig. 4B). In 

contrast, the Ap-uninfected network required the removal of a larger 
fraction, specifically 0.38 of nodes, to reach the same level of connec-
tivity loss (Fig. 4B). The results also showed that the networks of unin-
fected ticks maintain a larger largest connected component (LCC) 
(Fig. 4C) and have shorter average path length (APL) on average 
(Fig. 4D) compared to the infected ones. This suggests that the infection 
reduces network robustness. 

However, after adding nodes, the Ap-infected network showed a 
notable improvement in the LCC (Fig. 4C) and a reduction in the APL 
(Fig. 4D), indicating a recovery of robustness. In contrast, the Ap- 
uninfected network showed an increase in the average path length 
after adding nodes (Fig. 4D), which implies a slight decrease in 
robustness. Overall, these findings point out the vulnerabilities in mi-
crobial communities of ticks infected with A. phagocytophilum as well as 
their ability to regain robustness after eventual microbial invasions. 

4. Discussion 

The colonization resistance of tick microbiota may play a pivotal role 
in shaping the dynamics of tick-borne diseases. In this study, we propose 
that infection with A. phagocytophilum significantly restructures the tick 
microbial community, potentially leading to reduced colonization 
resistance. To explore this hypothesis, we employed a network-based 
approach, with a specific focus on network robustness, to assess the 
impact of A. phagocytophilum on colonization resistance. 

We observed no significant differences in alpha diversity metrics, 
including richness, evenness, and phylogenetic diversity, or in beta di-
versity using the Bray-Curtis dissimilarity index between the Ap- 
uninfected and Ap-infected groups. However, in contrast to our find-
ings, Abraham et al. (2017) observed beta diversity differences between 
the Ap-uninfected and Ap-infected groups using the weighted UniFrac 
metric. This difference underscores the impact of employing different 
analytical pipelines in the analysis of microbial community data. For 
instance, while we employed amplicon sequence variants (ASVs), 
Abraham et al. (2017) used operational taxonomic units (OTUs). ASVs 

Table 2 
Topological features of the taxonomic networks of Ap-uninfected and Ap- 
infected groups.  

Network features Anaplasma phagocytophilum 

Ap-uninfected Ap-infected 

No. of nodes 377 265 
No. of edges 4605 826 
Positive interactions 2844 (61.75%) 764 (92.49%) 
Negative interactions 1762 (38.26%) 62 (7.50%) 
Modularity 1.753 0.4 
Number of communities 6 62 
Network diameter 6 18 
Average degree 24.43 4.089 
Weighted degree 4.038 2.305 
Clustering coefficient (Triangles method) 0.436 0.699 
No. of triangles 20,375 3910 
Connectivity 1 24  

Table 3 
Jaccard index for infected and uninfected tick networks.  

Local centrality measures Jaccard index and statistical significance of differences  

Jacc P (≤ Jacc) P (≥ Jacc) 

Degree centrality 0.12 0.001*** 1.00 
Betweenness centrality 0.14 0.001*** 1.00 
Closeness centrality 0.14 0.001*** 1.00 
Eigenvector centrality 0.14 0.001*** 1.00 
Hub taxa 0.32 0.46 0.58 

Notes: P (≤ Jacc) and P (≥ Jacc) refer to the probabilities of observed Jaccard 
similarity coefficient (Jacc) that is either less than or equal to, or greater than or 
equal to, a Jacc calculated for randomly generated networks, respectively. Sig-
nificance code: ***P = 0.001. 

Fig. 4. Comparison of network robustness after node addition and removal. A Connectivity loss was measured in different attack scenarios for Ap-uninfected and Ap- 
infected networks: betweenness (red), cascading (green), degree (orange), and random (blue). B Cascading removal representation for Ap-uninfected vs Ap-infected. 
Additionally, the impact of node addition on network robustness was evaluated by employing two measures largest connected component (LCC) and average path 
length (APL) (C, D). For each network, a total of 1000 nodes were added. The value reached for LCC size (C) and the APL (D) for A. phagocytophilum after each node 
addition was plotted. Tick groups (uninfected and infected) are represented by blue and red, respectively. 
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capture finer-scale diversity due to their resolution at the sequence level, 
whereas OTUs may lump together closely related sequences into the 
same unit, potentially obscuring underlying diversity patterns (Chiarello 
et al., 2022). This choice of pipeline can also influence alpha- and beta 
diversities, altering the ecological signal detected, particularly 
regarding presence/absence indices like richness index and unweighted 
UniFrac (Chiarello et al., 2022). This discrepancy in diversity estimates 
may be associated with the lower evenness of relative abundances and a 
higher number of rare units observed with OTUs compared to ASVs 
(Chiarello et al., 2022). Furthermore, the correlation between microbial 
communities varied across different beta diversity indices (Nearing 
et al., 2018; Chiarello et al., 2022). For instance, weighted UniFrac 
emphasizes phylogenetic relationships between microbial taxa, 
revealing patterns of community assembly driven by evolutionary pro-
cesses. This metric is particularly useful for understanding how closely 
related taxa are distributed across different samples (Parks and Beiko, 
2013). On the other hand, Bray-Curtis focuses on the abundance and 
presence of taxa, providing insights into compositional differences be-
tween samples (Ricotta and Podani, 2017). It is valuable for identifying 
which taxa contribute most to dissimilarities between communities and 
can highlight ecological factors shaping community composition. The 
contrasting results obtained using Bray-Curtis dissimilarity and 
weighted UniFrac metrics highlight the substantial impact of employing 
different analytical pipelines in microbial community analysis. The 
choice between ASVs and OTUs as well as the selection of diversity 
indices can significantly influence the ecological signals detected, 
particularly in relation to presence/absence metrics and phylogenetic 
relationships. 

The lack of significant changes in alpha diversity suggests that 
overall microbial richness and evenness may remain relatively stable 
despite the presence of A. phagocythophilum. However, the observed 
change in composition (Fig. 2C) after the infection suggests that 
A. phagocythophilum could affect the occurrence of specific taxa in the 
tick microbiota, which may have important implications for coloniza-
tion resistance. Colonization resistance is not dependent on a single 
species but rather on the associations of multiple bacteria cohesively 
living in a community (Spragge et al., 2023). These findings suggest that 
while the overall diversity of the microbiota may not be impacted, 
specific microbial communities crucial for colonization resistance could 
be compromised by infection with A. phagocythophilum, as evidenced by 
the present network analysis. 

The observed composition changes could be associated with immu-
nomodulation mediated by A. phagocytophilum infection (Abraham 
et al., 2017). Ixodes scapularis antifreeze glycoprotein (IAFGP), a protein 
induced by A. phagocytophilum in ticks, selectively binds the terminal 
d-alanine residue of Gram-positive bacteria and inhibits biofilm forma-
tion among Gram-positive pathogens like Staphylococcus aureus, corre-
lating with a reduction in Gram-positive biofilm-forming species, 
including enterococci, during A. phagocytophilum infection (Abraham 
et al., 2017). The differential role of IAFGP on Gram-positive versus 
Gram-negative bacteria provides additional insights into the observed 
effects of IAFGP on the tick microbiota and specific genera, particularly 
in the context of A. phagocytophilum infection in ticks. Notably, silencing 
iafgp impaired A. phagocytophilum colonization of the tick gut (Abraham 
et al., 2017), suggesting that reduced colonization resistance mediated 
by IAFGP is essential for pathogen infection. Despite the stability in the 
overall number of observed features, the altered microbial composition 
may compromise functional redundancy (Estrada-Peña et al., 2020a), 
potentially weakening the tick microbiotaʼs ability to resist colonization 
by pathogens. 

As previously reported for other intracellular pathogens (Maitre 
et al., 2022, 2023), infection reduces network complexity, which agrees 
with our findings of A. phagocytophilum infection being linked to a 
reduction in the number of nodes and edges in the microbial networks. 
The varying proportions of unique and shared nodes between the 
Ap-uninfected and Ap-infected networks suggest that infection changes 

the composition of the bacterial community resulting in changes in 
network structure, and interactions among bacterial species within the 
community assembly. Nevertheless, the presence of shared nodes be-
tween the Ap-uninfected and Ap-infected networks, indicates that 
certain microbial taxa persist and maintain their interactions despite the 
presence of pathogens. These shared taxa may play important roles in 
maintaining the stability of the community (Seal et al., 2021; Paulino 
et al., 2023). 

The observation that only positive interactions remained in the core 
network suggests a cooperative relationship among the microbial taxa 
(Chow et al., 2014; Fountain-Jones et al., 2023). Positive interactions 
can indicate functional associations where organisms perform similar or 
complementary functions or interactions shaped by interspecies 
cross-feeding (Fuhrman and Steele, 2008; Eiler et al., 2012; Chow et al., 
2014; Lejal et al., 2021). Such cooperative interactions are thought to 
contribute to the overall stability and functionality of the microbial 
community, potentially enhancing colonization resistance (He et al., 
2014; Aivelo et al., 2019; Oña and Kost, 2022). Negative interactions 
can reflect competition and niche partitioning among microorganisms 
(Engel and Moran, 2013). While negative interactions may disrupt the 
stability of the network to some extent, their presence suggests ongoing 
ecological dynamics within the community that could benefit the tick. 
For example, antagonistic interactions between gut microorganisms in 
insects can potentially have protective functions against pathogens 
(Engel and Moran, 2013). 

Microbial communities, like those within tick populations, play a 
crucial role in the ecosystem balance, affecting both disease trans-
mission and resistance (Wu-Chuang et al., 2021, 2023; Pavanelo et al., 
2023). The stability of microbial networks in the face of disturbances - 
such as infections - can significantly influence their function and resil-
ience (Shade et al., 2012; Estrada-Peña et al., 2020b). In our study, using 
network analysis and principles of percolation theory, we assess the 
microbial networksʼ resistance to various types of disruptions, including 
node removals (Cohen et al., 2000, 2001) and additions (Cohen and 
Havlin, 2009), and how these disruptions affect network connectivity 
and efficiency. Network robustness reflects a systemʼs ability to maintain 
its connectivity and function despite disturbances (Cohen et al., 2000, 
2001; Cohen and Havlin, 2009). Our findings indicate that infection 
with A. phagocytophilum compromises the network robustness, demon-
strated by a more significant loss of connectivity following node re-
movals. This suggests that the infection makes the microbial community 
more vulnerable to disturbances, with a potential decrease in coloni-
zation resistance. 

On the other hand, after the introduction of new nodes (simulating 
the addition of new microbial species), we observed that infected tick 
networks exhibited lower LCC and higher APL values. The LCC is a 
measure of network cohesiveness, representing the largest group of 
interconnected nodes (Barabási and Pósfai, 2016; Kitsak et al., 2018), 
whereas APL indicates the networkʼs efficiency, with shorter paths 
meaning quicker and more efficient communication between nodes 
(Barabási and Pósfai, 2016). The changes observed in these metrics 
suggest that, while A. phagocytophilum infection initially disrupts 
network structure, making it less cohesive and efficient, the addition of 
new nodes helps to somewhat mitigate these effects by enhancing con-
nectivity and communication efficiency. This is in agreement with pre-
vious reports showing that less robust networks are more susceptible to 
new associations (Kwon and Cho, 2008; Scheffer et al., 2012; de Morais 
and Antunes, 2019), making it easier for potential pathogens or com-
mensals to establish and persist within the microbiota. Nevertheless, it is 
important to acknowledge the limitations inherent to the use of simu-
lated data, such as the inclusion of random nodes. While this approach 
enables us to explore potential shifts in network dynamics and theo-
retical resilience, it does not directly replicate biological realities. 
Consequently, the outcomes should be interpreted as indicative of 
possible structural responses to hypothetical changes rather than precise 
predictions of microbial interactions. 
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The compromised colonization resistance of tick microbiota caused 
by A. phagocytophilum rendering them more susceptible to pathogenic 
invasion may have implications in the natural environment where tick 
populations often harbor multiple tick-borne pathogens (TBPs). Co- 
infection with multiple pathogens is a common phenomenon in ticks 
(Nieto et al., 2018; Civitello et al., 2010; Moutailler et al., 2016; Hoff-
mann et al., 2023). It has been suggested that the presence of one 
pathogen may facilitate the establishment or proliferation of another 
within the tick microbiota (Gall et al., 2016; Sun et al., 2020). Our re-
sults suggest a novel mechanism by which one pathogen infection may 
decrease the colonization resistance of tick microbiota, favouring sub-
sequent invasion events, that may include TBPs and/or commensals. 

Using insights from human microbiota research (Spragge et al., 
2023), we can understand potential mechanisms by which compromised 
colonization resistance in ticks contributes to co-infection dynamics. In 
humans, diverse microbial communities limit pathogen growth by 
consuming nutrients that pathogens need, a principle known as nutrient 
blocking (Spragge et al., 2023). Key species within these communities, 
especially those closely related to pathogens, are crucial because they 
increase the overlap in nutrient use, making it harder for pathogens to 
find the resources they need to grow. Applying this concept to ticks, a 
compromised colonization resistance - due to reduced robustness and 
weak community assembly - lessens nutrient blocking, making ticks 
more susceptible to co-infections. This is because a less diverse micro-
biome cannot effectively consume all available nutrients, leaving more 
resources for pathogens. Moreover, the lack of key species that directly 
compete with pathogens for nutrients may further ease the establish-
ment and spread of these pathogens within the tick. 

This may have an impact on disease ecology, as for example, I. ricinus 
and I. scapularis ticks are capable of harboring multiple pathogens, 
thereby increasing the likelihood of co-transmission to humans or ani-
mals (Lou et al., 2017). This phenomenon may apply to TBPs other than 
A. phagocytophilum. For example, infection with B. burgdorferi has been 
shown to enhance the transmission of Babesia microti, by increasing its 
basic reproduction number above the threshold for persistence (Diuk--
Wasser et al., 2016). Furthermore, co-infection of B. burgdorferi and 
Rickettsia spp. in Ixodes nymphs results in bacterial replication rates 
higher than in single infections (Raulf et al., 2018; Sun et al., 2020). 
Further research could test empirically whether enhanced transmission 
of B. microti is due to a decreased colonization resistance induced by a 
primary infection with B. burgdorferi. While co-infection has been re-
ported to enhance pathogen transmission, it is important to note that 
pathogens interacting within a population may exhibit complex dy-
namics, including mutual promotion, competition, or independence 
(Lou et al., 2017; Sun et al., 2020). Therefore, beyond pairwise in-
teractions, facilitation, and competition summatory effects resulting in 
reduced colonization resistance may determine specific microbe inva-
sion outcomes. 

5. Conclusions 

Our study revealed that infection with A. phagocytophilum alters the 
microbial community within ticks, potentially affecting their resistance 
to colonization by other pathogens. While overall microbial diversity 
remains stable, the composition and network structure of the micro-
biome showed significant changes post-infection. Our network analysis 
indicates that A. phagocytophilum infection reduces the complexity and 
robustness of the microbial network, possibly making ticks more sus-
ceptible to further pathogenic invasions. These changes suggest a 
decrease in the microbiotaʼs ability to prevent additional infections, 
highlighting a potential mechanism for increased co-infection rates in 
tick populations. This study contributes to understanding how tick- 
borne diseases might spread more easily due to changes in tick micro-
biota caused by infection. It suggests that maintaining a healthy and 
diverse microbial community within ticks could be crucial for control-
ling the transmission of tick-borne diseases. Further research is 

necessary to explore the broader implications of these findings across 
different tick species and pathogens. 
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