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Alejandra Wu-Chuang c, Lianet Abuin-Denis c,f, Elianne Piloto-Sardiñas c,g, 
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c ANSES, INRAE, École Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
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A B S T R A C T

The Western honey bee (Apis mellifera) is a vital agricultural pollinator whose populations are 
threatened by the parasitic mite Varroa destructor and associated pathogens. While the impact of 
Paenibacillus species on honey bees, particularly Paenibacillus larvae causing American foulbrood, 
is documented, their effect on the microbiota of Varroa mites remains unclear. This study aimed 
to investigate the influence of Paenibacillus sp. on the bacterial communities of Varroa mites and 
adult honey bees. We hypothesized that Paenibacillus sp. would significantly alter the microbiota 
of Varroa mites but have minimal effect on that of adult honey bees. Utilizing 16S rRNA 
sequencing data from a previous study, we reanalyzed samples categorized into four groups based 
on Paenibacillus sp. infection load: highly infected and lowly infected honey bees (A. mellifera) and 
mites (V. destructor). Infection status was determined by Paenibacillus sp. read counts, with more 
than three reads indicating high infection. Microbial diversity was assessed using alpha and beta 
diversity metrics. Co-occurrence networks were constructed to visualize bacterial community 
assemblies, and network robustness was evaluated through node addition and removal tests. 
Keystone taxa were identified based on eigenvector centrality and relative abundance. Highly 
infected Varroa mites exhibited a significant reduction in alpha diversity and a markedly different 
bacterial community composition compared to lowly infected mites (p < 0.05). Their bacterial co- 
occurrence networks showed decreased connectivity and robustness, indicating a disruptive effect 
of Paenibacillus sp. In contrast, adult honey bees displayed no significant differences in alpha 
diversity or network structure between highly and lowly infected groups (p > 0.05), suggesting a 
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resilient microbiota. Keystone taxa analysis revealed fewer central species in highly infected 
Varroa mites, potentially impacting network stability. High Paenibacillus sp. infection is associated 
with significant alterations in the microbiota of Varroa mites, disrupting bacterial communities 
and potentially affecting mite physiology. The microbiota of adult honey bees appears more 
robust against Paenibacillus sp. influence. These findings enhance our understanding of the 
complex interactions within the “honey bee–mite–microorganism” system and may inform future 
strategies for managing Varroa mite infestations and associated pathogens.

1. Introduction

Western honey bee (Apis mellifera) is an important agricultural pollinator contributing to global food production [1]. In recent 
decades, the widespread parasitic mite Varroa destructor, the major honey bee pest, has resulted in massive losses of honey bee colonies 
[2]. The main threat of the infestation by this parasite stems from its interactions with honey bee pathogens enhancing their deadly 
potential [3]. However, the impacts of honey bee pathogens on the biological aspects of Varroa mites are not fully elucidated. 
Unraveling the connections within the interconnected system “honey bee-mite-associated microorganisms” can yield valuable bio
logical insights.

The gut microbiota of honey bees harbors relatively simple composition of bacterial species. The core bacteria phylotypes found in 
adult honey bee guts typically include Lactobacillus Firm-4 and Firm-5, Snodgrassella alvei, Gilliamella apicola, and Frischella perara, 
Bifidobacterium with additional bacterial taxa such as Bartonella apis, Bombella apis, and Commensalibacter are commonly present in 
adult honey bee samples [4]. These bacteria inhabit distinct parts of honey bee guts [5], cooperates with each other [6], and their 
activity is important for honey bee physiological processes. For instance, Lactobacillus strains provide metabolites involved in olfactory 
learning and memory [7], Snodgrassella is involved in decomposition of pectin, supporting effective digestion of pollen grains [8]. Also, 
gut microbiota plays an important role in the modulation of immune system, e.g. by stimulating production of antimicrobial peptides 
[9].

Several bacterial taxa have been associated with Varroa mites—namely, Enterobacteriaceae, Pseudomonas, Enterococcus, Morga
nella, and Arsenophonus [10–13]— suggesting these bacteria as common inhabitants of the mite. Despite the Varroa mite’s well-defined 
ecological niche as a highly specialized parasite of the honey bee, residing exclusively within honey bee hives and feeding on honey bee 
body components [14], detailed knowledge about the conservation and function of the bacteria associated with these mites is still 
lacking. While the relationships between the mite and associated bacteria remain largely unexplored, there has been a more detailed 
examination of its association with deadly honey bee pathogen, such as the Deformed Wing Virus (DWV) [14].

Building on this understanding, the study by Hubert et al. further explores the microbial interactions between Varroa mites and 
honey bees, identifying shared bacterial taxa that suggest a possible transfer of these bacteria between the parasite and its host [11]. 
For example, Spiroplasma, the agent of honey bee “May disease” [15], has been identified as abundant in Varroa mites [11]. Despite the 
potential for the presence and proliferation of honey bee pathogens to induce immune changes in the Varroa mite, as described in ticks 
and associated pathogens [16], their impact on Varroa mite physiology remains largely unclear.

Honey bee hives commonly contain several environmental bacteria, including species from the Paenibacillus genus [17]. Honey 
bees are associated with both pathogenic and non-pathogenic Paenibacillus species. Specifically, honey bees are known to interact with 
four key species: Paenibacillus larvae, which is the primary causative agent of American foulbrood disease [18,19], a devastating 
bacterial infection targeting honey bee larvae. Notably, P. larvae spores cannot germinate in adult honey bees, leaving this stage of the 
bee’s life cycle unaffected [19]. Other species include Paenibacillus melissococcoides, a possible pathogen of honey bee larvae [20], 
Paenibacillus apiarius [21], and Paenibacillus apis [22], both found in bee colonies but not a significant pathogen, and Paenibacillus 
intestini [22], part of the bee gut microbiota. Several other Paenibacillus species, such as Paenibacillus alvei [23], Paenibacillus den
driformis [24], Paenibacillus thiaminolyticus [21,25] are primarily environmental bacteria found in the hive. These species are not 
typically harmful to bees [23,24,26,27], though P. alvei can act as a secondary invader in colonies affected by European foulbrood 
disease.

Paenibacillus larvae has also been associated with Varroa mite. In honey bee colonies highly affected by American foulbrood, the 
spores of P. larvae were found attached to the surface of Varroa mites [28,29]. Additionally, in vitro cultivated homogenate of Varroa 
mites from hives with American foulbrood resulted in the growth of P. larvae colonies, suggesting the presence of viable P. larvae 
bacteria inside the mite [29]. However, experimental inoculation of honey bee colonies with P. larvae through Varroa mites carrying a 
high number of spores did not lead to the outbreak of American foulbrood [28], thus suggesting that, under these experimental 
conditions, Varroa mites do not act as a vector for the disease. However, an unspecified Paenibacillus sp. has been identified to be 
involved in the bacterial community of Varroa mite [11], suggesting that Paenibacillus sp. possibly affects the assembly of bacterial 
community in the mites, but the exact impact of the bacterium on the bacterial association within the Varroa mites has not been shown.

This study was designed to explore the differential impact of Paenibacillus sp. on the bacterial communities of Varroa mites and 
adult honey bees. We hypothesized that Paenibacillus sp. significantly influences the microbiota of Varroa mites, potentially due to their 
direct feeding on honey bee fat body and hemolymph, which could introduce different microbial interactions than those occurring in 
the gut of nectar-feeding adult bees. Conversely, since Paenibacillus sp., including the pathogenic P. larvae, typically exists in a dormant 
spore form in adult bees that does not affect their immediate health, we proposed that these bacteria do not significantly alter the adult 
bees’ bacterial community. This hypothesis addresses the observation that despite the known pathogenicity of Paenibacillus sp. in bee 
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larvae, adult bees seem unaffected in terms of microbial diversity and function.
To test our hypothesis, we employed a comprehensive analysis of the 16S rRNA sequence dataset originally compiled by Hubert 

et al. [11]. This dataset included samples from Varroa mites and adult honey bees that were collected from colonies known to test 
positive for P. larvae. To specifically address the impact of Paenibacillus sp., we first categorized these samples into groups based on the 
quantitative presence of Paenibacillus reads. Samples were classified as either “highly infected” if they contained more than three reads 
of Paenibacillus sp., or “lowly infected” if they contained three or fewer, enabling a targeted exploration of bacterial community 
changes relative to the level of Paenibacillus infection. Utilizing an experimental network approach, we analyzed the topological 
differences in the bacterial networks between these defined groups. This methodological framework allowed us to identify patterns of 
microbial association and assess network resilience to perturbations, which provided insights into how Paenibacillus sp. might disrupt 
or stabilize bacterial communities differently in mites compared to bees. Furthermore, we identified specific bacterial taxa that 
correlated directly with the presence of Paenibacillus sp. and examined the impact of these correlations on the connectivity of two 
prominent bacterial taxa, Escherichia and Rickettsiella, within the microbiomes of the respective hosts. These findings validate our 
hypothesis regarding the differential impacts of Paenibacillus sp. on Varroa mites and honey bees, enhancing our understanding of the 
complex “honey bee–mite–microorganism” interactions and offering potential strategies for targeted intervention in managing Varroa 
mite infestations and associated pathogens effectively.

2. Methods

2.1. Original dataset

In this study, we analyzed available 16S rRNA datasets. The original study by Hubert et al. compared the microbial abundance and 
diversity in the microbiomes of Apis mellifera honey bee and Varroa destructor mite [11]. Samples were collected from seven apiaries in 
Czechia, resulting in 26 pairs of mites and adult worker honey bees. Prior to sampling, experimental colonies underwent acaricidal 
treatment and experimental Varroa mites were sampled from bottom boards. The DNA was isolated from whole-body homogenates of 
pooled honey bees and Varroa mites, which were surface-washed with ethanol prior to homogenization. The pools consisted of 10 adult 
worker honey bees and 10 to 50 female mites. The 16S rRNA gene fragments were PCR-amplified using 27Fmod/ill519Rmod barcoded 
primers targeting V1-V3 hypervariable regions and sequenced by Illumina TruSeq. The data was downloaded from NCBI GenBank 
under the SRA number SRP067076.

The dataset included two samples that were likely misclassified, with one labeled as a female honey bee that was a female Varroa 
and another labeled as a worker Varroa that was a honey bee. We corrected these misclassifications by reassigning each sample to its 
appropriate category before proceeding with the analysis. In addition, one sample of honey bee and one of Varroa mite were discarded 
from the analysis due to inaccuracies in their accession numbers, as they shared the same identifier.

2.2. Grouping based on Paenibacillus sp. infection load

To investigate the impact of Paenibacillus sp. on the microbial communities of honey bees and Varroa mites, we divided the dataset 
into four groups based on the Paenibacillus sp. read counts obtained from the 16S rRNA sequencing data. Samples with Paenibacillus sp. 
read counts of three or fewer were considered to have a low infection load, while those with more than three reads were considered 
highly infected. This threshold was chosen based on the distribution of Paenibacillus sp. read counts across samples, ensuring a clear 
distinction between low and high infection levels for comparative analysis. The four groups were AM-high (A. mellifera, highly 
infected, n = 15), AM-low (A. mellifera, lowly infected, n = 10), VD-high (V. destructor, highly infected, n = 17), and VD-low 
(V. destructor, lowly infected, n = 8) (Supplementary Table S1). This grouping allowed us to compare the microbial communities 
between highly and lowly infected honey bees and Varroa mites, facilitating the assessment of Paenibacillus sp.’s impact on their 
microbiota.

2.3. Bioinformatics analysis of 16S rRNA amplicon sequences

All sequencing processing was performed using Quantitative Insights Into Microbial Ecology (QIIME2) environment [30], version 
2023.7. The original (.fastq) 16S rRNA sequences from the NCBI SRA were downloaded using q-fondue plugin [31]. Data were 
denoised, merged, and filtered using DADA2 method [32] implemented in QIIME2 [30], version 2023.7. Representative sequences 
were annotated using Bayes taxonomic classifier [33] based on 16S rRNA SILVA database (v138) [34] (Supplementary file S1).

2.4. Microbial diversity and relative abundance

Microbial diversity of bacterial community was analyzed applying alpha and beta diversities. Alpha diversity providing an intra- 
group analysis was measured by the metrics of Pielou’s evenness [35], observed features [36], and Shannon entropy [37] using a 
Mann-Whitney test (p < 0.05) performed in GraphPad Prism 9.0.2. (GraphPad Software Inc., San Diego, CA, USA). Pielou’s evenness 
index measures the evenness of taxa distribution in the groups. Observed features refer to the number of taxa or “features” observed in 
the groups describing the taxa richness. Shannon index measures the taxa diversity while taking into account both taxa richness and 
evenness. These methods were applied to evaluate the evenness, richness, and diversity of bacterial communities among several groups 
of honey bees and Varroa mites, both Paenibacillus highly and lowly infected. Beta diversity [38] identifying a between-group 
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dissimilarity was carried out by Principal Coordinates Analysis (PCoA) plot based on Bray-Curtis distance matrix [39], PERMANOVA 
test (p < 0.05) in QIIME2 2023.7 (Supplementary file S1) [30], and ANOVA test (p < 0.05) with betadisper function [40] from Vegan 
package in R software 4.3.2 [41], performed using RStudio (Supplementary file S2) [42]. The PCoA method was applied to visualize 
the similarities or dissimilarities among the samples and analyze the community composition. Specifically, by applying this method, 
we aimed to compare the diversity of several groups included in this analysis to perform the evaluation of Paenibacillus infection. 
Cluster analysis was conducted using the Jaccard coefficient of similarity, implemented in Vegan package [40] in R 4.3.2 [41], 
performed using RStudio (Supplementary file S3) [42].

2.5. Unique and shared taxa identification

The quantification of unique and shared taxa was displayed by UpSet plot provided by UpSetR package [43], implemented in R 
4.3.2 [41], and performed using RStudio (Supplementary file S4) [42]. The bacterial contribution abundance to highly and lowly 
infected groups was also displayed by Venn diagram performed by online tool available on website https://bioinformatics.psb.ugent. 
be/webtools/Venn/.

2.6. Bacterial co-occurrence networks

Co-occurrence network analysis was conducted using the Sparse Correlations for Computational data (SparCC) method [44], 
implemented in R 4.3.2 [41], and performed using RStudio (Supplementary file S5) [42]. Correlation coefficients of SparCC ≥0.5 or ≤
− 0.5 were selected. Network visualization and calculation of topological features and taxa connectedness (i.e., number of nodes and 
edges, modularity, network diameter, average degree, weighted degree, clustering coefficient, and centrality metrics) were performed 
using the software Gephi 0.9.2 [45].

2.6.1. Correlation analysis
Correlation analyses were performed on the topological features—betweenness, degree, and eigenvector centrality—of taxa pre

sent in networks with SparCC correlation coefficients of ≥0.3 or ≤ − 0.3. These analyses were conducted using GraphPad Prism version 
9.0.2 (GraphPad Software Inc., San Diego, CA, USA). The choice between Pearson and Spearman correlation methods was based on the 
distribution of the data as determined by the Shapiro-Wilk test for normality: Pearson correlation was used for normally distributed 
data, while Spearman correlation was applied for data that did not meet the normality assumption. Statistical significance was assessed 
accordingly.

2.6.2. Core association networks
The Core Association Network (CAN) analysis refers to the networks of microbial taxa that are consistently associated with each 

other across different individuals or conditions. This analysis provides the insights into the interactions and relationships between 
different microbes within the microbiota. In this analysis, CAN was applied to both highly and lowly infected networks with SparCC 
≥0.5 or ≤ − 0.5. The analysis was conducted using Anuran toolbox [46] with default parameters in the Anaconda Python environment 
(Supplementary file S6) [47].

2.6.3. Comparative network analysis
Various aspects of importance or centrality of individual nodes within the networks were analyzed using the Network construction 

and Comparison for Microbiome data (NetCoMi) package [48], implemented in R 4.3.2 [41], and performed using RStudio 
(Supplementary file S7) [42]. As correlations are calculated using the SpiecEasi method, the correlations found slightly differ from the 
co-occurrence networks generated using the SparCC algorithm. The analysis was performed to investigate the similarities or differ
ences in the networks. The Jaccard index which calculates local centrality measures (i.e., degree, betweenness, closeness, eigenvector, 
and hub taxa) was employed to assess the similarity between the sets of the most central nodes. The Jaccard index measures the level of 
node similarity and ranges from 0 (totally different) to 1 (unique). The p-values, either p ≤ J or p ≥ J, correspond to “less than or equal” 
and “higher than or equal”, respectively, and represent the likelihood of Jaccard index deviating from the expected value. The Adjusted 
Rand Index (ARI) measures the dissimilarity between data clustering and ranges from − 1 (different clustering) to 1 (identical). The 
negative values represent lower than random clustering while positive ones stand for higher than random clustering.

2.6.4. Network robustness
The network robustness analysis measures the effects of node addition and removal on network connectivity. We stimulated these 

effects on the networks with SparCC ≥0.5 or ≤ - 0.5. Node addition analysis was performed using a method outlined by Freitas et al. 
[49], implemented in R 4.3.2 [41], and performed using RStudio (Supplementary file S8) [42]. New nodes in the number of 1000 were 
randomly added to the network and their impact was evaluated by Average Path Length (APL) and Largest Connected Component 
(LCC). The resulting average values were visualized by GraphPad Prism 9.0.2 (GraphPad Software Inc., San Diego, CA, USA).

To evaluate network robustness to node removal, we employed both random and directed attacks. For directed attack, three 
methods were applied: degree centrality, betweenness centrality, and cascading. In degree centrality approach, nodes with the highest 
degree centrality values were sequentially removed. In betweenness centrality approach, nodes with the highest betweenness cen
trality values were prioritized for removal. The cascading method involved initial removal of nodes with the highest betweenness 
centrality values, followed by a recalculation of betweenness centrality after each removal to dynamically adjust the subsequent 
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removals. For the analysis of network robustness, the Network Strengths and Weaknesses Analysis (NetSwan) package [50] was used 
within the RStudio environment (Supplementary file S9) [42].

2.7. Keystone taxa identification

Keystone taxa were identified based on three established criteria [51]: (i) presence across all samples within an experimental group 
(ubiquitousness), (ii) eigenvector centrality exceeding 0.75, and (iii) mean higher than the average relative abundance compared to 
the average relative abundance across all taxa in the experimental group. Eigenvector centrality quantifies an importance of a node 
within a network where a higher score indicates strong connections with other highly scored nodes. Eigenvector centrality values were 
obtained using Gephi 0.9.2 software [45]. The mean common level ratio (clr) values were computed for each sample in both datasets 
using ALDEx package [52], and plotted alongside eigenvector centrality values using GraphPad Prism version 8.0.0 (GraphPad 
Software, San Diego, California USA).

2.8. Local connectivity analysis of Paenibacillus, Escherichia, and Rickettsiella

Direct interactions between the bacteria of Paenibacillus, Escherichia, and Rickettsiella, and the rest of bacterial community was 
determined. The subnetworks with the specific bacteria (either Paenibacillus, Escherichia, or Rickettsiella) were constructed using Gephi 
0.9.2 software [45]. The strength of the edges was presented with both SparCC ≥0.3 or ≤ − 0.3 and SparCC ≥0.5 or ≤ − 0.5.

Fig. 1. Bacterial diversity and differential analysis of bacterial taxa in Paenibacillus highly and lowly infected honey bees and Varroa mites. Alpha- 
diversity of bacterial taxa was assessed using Pielou’s evenness (A) and Shannon’s entropy index (B), statistical analysis was performed using Mann- 
Whitney test at the significance level set on p < 0.05. (B) Beta diversity was compared using Jaccard distance (C) and Bray-Curtis dissimilarity index 
(D). Small circles represent samples, and ellipses represent the centroid position of each group. The number of unique and shared bacterial taxa 
between highly and lowly infected honey bees (E) and Varroa mites (F). Number of bacterial taxa shared between groups in multiple comparisons 
(G). Boxplots of the CLR values of bacterial taxa found to differ between highly and lowly infected honey bees and/or Varroa mites (H). Mann- 
Whitney test showed differences at the levels of p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). The compared groups are distinguished by colors: 
orange – Paenibacillus highly infected honey bees, yellow – lowly infected honey bees, blue – Paenibacillus highly infected Varroa mites, green – lowly 
infected Varroa mites.
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2.9. Clustering analysis of metagenome

The Clustering Analysis of Metagenome (CLAM) [53] was conducted in R 4.3.2 [41] and performed using RStudio (Supplementary 
file S10) [42]. This analysis classifies the taxa of the specific groups into different categories according to their interactions. These 
include specialists (organisms that have a narrow range of hosts or environmental conditions), generalists (organisms that can thrive in 
a wide range of conditions or with multiple hosts), or taxa that are too rare to be classified into these categories.

2.10. Figure and graph edition

All figures were edited by Inkscape 1.3.2 software (Boston, MA, USA).

3. Results

3.1. Microbial diversity, composition, and relative abundance of Varroa and honey bee microbiota infected by Paenibacillus

To explore the impact of Paenibacillus sp. load on the bacterial communities associated with adult honey bees and Varroa mites, we 
evaluated the diversity, composition, and relative abundance of identified bacterial taxa.

3.1.1. Alpha diversity analysis
The alpha diversity, assessed through Pielou’s evenness (Mann-Whitney test, p = 0.11; Fig. 1A) and Shannon entropy (Mann- 

Whitney test, p = 0.36; Fig. 1B), showed no significant difference between highly and lowly infected honey bees. This suggests that the 
overall bacterial community diversity and evenness in honey bees remain stable despite varying levels of Paenibacillus sp. infection. In 
contrast, highly infected Varroa mites exhibited a significant decrease in both Pielou’s evenness (Mann-Whitney test, p = 0.01; Fig. 1A) 
and Shannon entropy (Mann-Whitney test, p = 0.03; Fig. 1B) compared to lowly infected mites, indicating a disruption in their mi
crobial community structure.

Although the number of observed features did not significantly differ between highly and lowly infected groups for both honey bees 
(Mann-Whitney test, p = 0.33; Supplementary Fig. S1A) and Varroa mites (Mann-Whitney test, p = 0.46; Supplementary Fig. S1B), 
there was a non-significant trend toward a reduced number of features in highly infected Varroa mites. This trend may reflect a loss of 
less abundant taxa due to the dominance of Paenibacillus sp. or its effects on the microbial ecosystem within the mites.

3.1.2. Beta diversity and community composition
Jaccard clustering analysis revealed two distinct clusters of honey bees and Varroa mites (Fig. 1C), highlighting the fundamental 

differences in their microbial communities. ANOVA analysis confirmed significant intra-group variability (p = 0.001). When 
comparing the beta diversity between highly and lowly infected groups using the Bray-Curtis index, we found significant differences in 
bacterial composition for both honey bees and Varroa mites (PERMANOVA, p = 0.009; Fig. 1D). In honey bees, despite the stable alpha 
diversity, the significant differences in beta diversity suggest that the composition of the bacterial community changes with Paeni
bacillus sp. infection, even if overall diversity remains unaffected. This indicates that certain taxa may increase or decrease in abun
dance, altering the community structure without affecting diversity indices.

3.1.3. Unique and shared taxa
The majority of bacterial taxa identified in honey bees were shared between the highly and lowly infected groups, totaling 62 taxa 

(Fig. 1E; Supplementary Table S2). However, highly infected honey bees harbored 25 unique taxa, whereas lowly infected honey bees 
had 6 unique taxa. This suggests that Paenibacillus sp. infection may be associated with the introduction or proliferation of additional 
bacterial taxa in honey bees. A similar trend was observed in Varroa mites, with 64 bacterial taxa (Fig. 1F, Supplementary Table S2). 
Highly infected mites had 18 unique bacterial taxa, while lowly infected mites possessed 12 unique taxa. Notably, across all experi
mental groups, 9 bacterial taxa were associated exclusively with highly infected samples, while only a single taxon was unique to lowly 
infected groups (Fig. 1G, Supplementary Table S2). In addition, 48 bacterial taxa were identified across all groups, with some taxa 
being unique to either honey bees or Varroa mites.

3.1.4. Relative abundance of specific bacterial taxa
Highly infected groups displayed notable changes in the abundance of specific bacterial taxa (Fig. 1H). In honey bees, there was a 

significant decrease in Lactobacillus abundance (Kruskal-Wallis test, p = 0.005), which could have implications for gut health and 
immunity. Conversely, there was an increased abundance of Bartonella (Kruskal-Wallis test, p = 0.01) and Mycobacterium (Kruskal- 
Wallis test, p = 0.02), which may reflect a microbial shift associated with Paenibacillus sp. infection.

In Varroa mites, highly infected samples presented increased abundance of Mycobacterium (Kruskal-Wallis test, p = 0.01) and 
Morganella (Kruskal-Wallis test, p = 0.001), and decreased abundance of Bartonella (Kruskal-Wallis test, p = 0.007), Commensalibacter 
(Kruskal-Wallis test, p = 0.02), and Orbaceae (Kruskal-Wallis test, p = 0.001). These changes suggest that Paenibacillus sp. infection 
significantly alters the microbial ecosystem within Varroa mites, potentially affecting their physiology and ability to transmit 
pathogens.
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3.2. Impact of Paenibacillus sp. on bacterial assembly and hierarchical structure of Varroa mites and honey bee microbiota

To examine the impact of Paenibacillus sp. on the structure of bacterial communities in honey bees and Varroa mites, we generated 
co-occurrence networks visualize and compare bacterial community assembly between highly and lowly infected groups.

3.2.1. Network complexity and core associations
In honey bees, the co-occurrence networks of highly infected (Fig. 2A) and lowly infected (Fig. 2B) were relatively similar in 

complexity, consisting of 27 nodes and 36 edges, and 31 nodes and 59 edges, respectively (Table 1; Supplementary Table S3). This 
suggests that Paenibacillus sp. infection has a minimal impact on the overall community assembly in honey bees. In contrast, the 
bacterial co-occurrence network in highly infected Varroa mites (Fig. 2C) was markedly less complex than that of lowly infected mites 
(Fig. 2D). Highly infected Varroa mites had only 19 nodes and 22 edges, whereas lowly infected mites had 65 nodes and 156 edges 
(Table 1; Supplementary Table S3). This significant reduction indicates that Paenibacillus sp. infection disrupts the microbial com
munity assembly in Varroa mites.

Additionally, the number of core associations—key interactions within the microbial community—was higher in honey bees than 
in Varroa mites. Honey bees had twice as many core associations (8 nodes and 5 edges; Fig. 2E) compared to Varroa mites (4 nodes and 
2 edges; Fig. 2F), suggesting a more stable and interconnected microbial community in honey bees, even under high Paenibacillus sp. 
infection.

3.2.2. Centrality measures and network topology
To explore changes in network topology, we performed correlation analysis focusing on centrality parameters—betweenness, 

degree, and eigenvector—of nodes present in the networks with greater topological features. No significant correlations were found 
between the centrality measures of nodes in highly and lowly infected honey bees (Supplementary Fig. S2A) or Varroa mites 
(Supplementary Fig. S2B), indicating that Paenibacillus sp. infection does not systematically alter the distribution of centrality mea
sures within the networks.

3.2.3. Comparative network analysis
Using comparative co-occurrence networks (Fig. 3), we quantified the similarity between the bacterial networks of highly (Fig. 3A 

and C) and lowly infected groups (Fig. 3B and D). In honey bees (Fig. 3A and B), the Jaccard index for centrality measures conformed to 

Fig. 2. Co-occurrence bacterial networks of honey bees and Varroa mites. The representation of bacterial co-occurrence networks (SparCC ≥0.5 or 
≤ − 0.5) in highly infected honey bees (A), lowly infected honey bees (B), highly infected Varroa mites (C), lowly infected Varroa mites (D). Core 
association networks (SparCC ≥0.5 or ≤ − 0.5) of bacteria in Paenibacillus highly and lowly infected honey bees (E) and in Paenibacillus highly and 
lowly infected Varroa mites (F). Bacterial taxa with at least one connection are symbolized by nodes while edges represent a significant interaction 
between them. Green and red edges stand for positive and negative correlations, respectively. The node color is based on modularity class, therefore, 
the nodes with the same color are part of the same cluster. The size of the nodes is related to the eigenvector centrality.
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randomness, suggesting that the overall network structure remains consistent regardless of infection status (Table 2). The ARI indi
cated moderate similarity between the networks of highly (Fig. 3A) and lowly infected honey bees (Fig. 3B) (ARI = 0.383, p < 0.001), 
supporting the idea of a resilient microbiota.

In Varroa mites (Fig. 3C and D), however, all centrality measures were lower than expected by chance when comparing highly 
(Fig. 3C) and lowly infected groups (Fig. 3D) (Table 2). The ARI was significantly lower (ARI = 0.112, p < 0.001), reflecting substantial 
alterations in network structure due to Paenibacillus sp. infection.

Table 1 
Topological features of co-occurrence networks.

Topological features AM-high AM-low VD- high VD-low AM-CAN VD-CAN

Total nodes 88 69 82 77 8 4
Connected nodes 27 31 19 65 8 4
Edges 36 59 22 156 5 2
Positives 25 (69.44 %) 31 (52.54 %) 17 (77.27 %) 103 (66.03 %) 5 (100 %) 1 (50 %)
Negatives 11 (30.56 %) 28 (47.46 %) 5 (22.73 %) 53 (33.97 %) 0 (0 %) 1 (50 %)
Network diameter 5 5 6 7 2 1
Average degree 2.667 3.806 2.361 4.052 4.844 1
Weighted degree 0.638 0.162 0.759 0.789 0.967 − 0.024

AM-high – Paenibacillus highly infected honey bees, AM-low – lowly infected honey bees, VD-high – Paenibacillus highly infected Varroa mites, VD-low 
– lowly infected Varroa mites, CAN – Core Association Network.

Fig. 3. Comparative network analysis. Comparison of bacterial associations (SparCC ≥0.5 or ≤ − 0.5) between Paenibacillus highly infected honey 
bees (A) and lowly infected honey bees (B), as well as between Paenibacillus highly infected Varroa mites (C) and lowly infected Varroa mites (D). 
The nodes stand for bacterial taxa while the edges represent the interactions between them. Positive (green) or negative (red) correlations are shown 
by the color of edges. Thickness of the edges is proportional to the strength of the correlation. The color and size of the nodes are related to 
modularity class and eigenvector centrality, respectively.
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3.2.4. Network robustness analysis
We assessed network robustness through node addition and removal tests. In the node addition test, both bacterial networks of 

honey bees responded similarly, with comparable APL (Fig. 4A) and LCC values (Fig. 4B). This suggests that the honey bee microbial 
networks maintain their connectivity despite the introduction of new nodes, reflecting robustness to perturbations. Conversely, the 
network of lowly infected Varroa mites exhibited lower APL (Fig. 4A) and higher LCC (Fig. 4B) compared to the highly infected Varroa 
mite network and both honey bee networks. This indicates that the microbial community in lowly infected mites is more robust and 
interconnected, while the community in highly infected mites is more fragile.

In node removal tests (Fig. 4C–F), the bacterial network of lowly infected Varroa mites displayed the highest resilience against 
targeted attacks based on cascading (Fig. 4C), betweenness (Fig. 4D), and degree (Fig. 4E) node removals. Random attack elicited 
similar responses across all tested networks (Fig. 4F). The highly infected Varroa mite network was the most vulnerable, experiencing 

Table 2 
Jaccard index of bacterial co-occurrence networks.

Local centrality measures AM- high vs. AM-low VD- high vs. VD-low

J index P (≤Jacc) P (≥Jacc) J index P (≤Jacc) P (≥Jacc)

Degree 0.372 0.761 0.347 0.125 0.003 ** 0.999
Betweenness 0.333 0.594 0.576 0.139 0.008 ** 0.998
Closeness 0.372 0.761 0.347 0.149 0.004 ** 0.999
Eigenvector 0.372 0.761 0.347 0.125 0.001 ** 0.999
Hub taxa 0.372 0.761 0.347 0.203 0.013 * 0.994

AM-high – Paenibacillus highly infected honey bees, AM-low – lowly infected honey bees, VD-high – Paenibacillus highly infected Varroa mites, VD-low 
– lowly infected Varroa mites.
* p < 0.05.
** p < 0.01.

Fig. 4. Network robustness analysis. Resistance of the networks (SparCC ≥0.5 or ≤ − 0.5) to perturbation caused by nodes addition was assessed 
using APL (A) and LCC (B). The networks were assessed also for the resistance to node attacks based on cascading (C), betweenness (D), degree (E), 
and random (F).
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greater connectivity loss. Honey bee networks showed intermediate resilience, with the highly infected group being slightly more 
susceptible to connectivity loss than the lowly infected group. These findings suggest that Paenibacillus sp. infection compromises the 
stability of the microbial network in Varroa mites more so than in honey bees.

3.2.5. Keystone taxa identification
Keystone taxa play crucial roles in maintaining microbial community structure. In honey bees, the network of the highly infected 

group contained only one keystone taxon (Bifidobacterium) (Fig. 5A), whereas the lowly infected group had two keystone taxa 
(Lactobacillus and Gilliamella) (Fig. 5B). This reduction may have implications for gut health and functionality.

In Varroa mites, both highly and lowly infected groups each contained a single keystone taxon (Orbaceae and Snodgrassella, 
respectively) (Fig. 5C and D). Notably, the eigenvector centrality of ubiquitous bacterial taxa was markedly lower in highly infected 
groups compared to lowly infected groups, particularly in Varroa mites. This suggests that Paenibacillus sp. infection diminishes the 
influence of key microbial players, potentially disrupting essential microbial functions.

3.3. Local connectivity analysis of Varroa and honey bee microbiota infected by Paenibacillus

Given the observed influence of Paenibacillus sp. on various aspects of bacterial communities, we examined its local connectivity 
within the microbial networks of honey bees and Varroa mites to understand how it affects specific bacterial associations.

3.3.1. Associations of Paenibacillus sp. in honey bees and Varroa mites
In the honey bee bacterial network, using a correlation threshold of SparCC ≥0.3 or ≤ − 0.3, Paenibacillus sp. exhibited a total of 16 

bacterial associations—nine positive and seven negative (Fig. 6A). Notably, most positive associations of Paenibacillus sp. occurred 
with core honey bee taxa such as Lactobacillus, Frischella, and Snodgrassella, which are essential for honey bee gut health and function. 
Negative associations were primarily with environmental taxa and opportunistic pathogens, including Spiroplasma, Lachnoclostridium, 
Rickettsiella. At a higher correlation threshold (SparCC ≥0.5 or ≤ − 0.5), stronger associations included positive connections with 
Lactobacillus, Enterococcus, and Bifidobacterium, and a single negative association with Spiroplasma (Fig. 6B). These findings suggest 
that Paenibacillus sp. integrates into the core microbiota of honey bees without severely disrupting existing microbial relationships, 
aligning with our hypothesis of minimal impact on adult honey bees.

In contrast, in the bacterial networks of Varroa mites, Paenibacillus sp. was associated with 12 taxa (six positive and six negative) 
when using a correlation threshold of SparCC ≥0.3 or ≤ − 0.3 (Fig. 6C). The only stronger association (SparCC ≥0.5 or ≤ − 0.5) was a 

Fig. 5. Keystone taxa in bacterial communities of Paenibacillus highly and lowly infected honey bees and Varroa mites. The graphs show the mean 
relative abundance (clr transformed) and the eigenvector centrality of ubiquitous (present in all samples) bacterial taxa in Paenibacillus highly 
infected honey bees (A), lowly infected honey bees (B), Paenibacillus highly infected Varroa mites (C), lowly infected Varroa mites (D). A vertical 
dotted line denotes the eigenvector centrality cutoff set at 0.75 while a horizontal dotted line indicates the average clr value of all taxa. Taxa were 
deemed keystone if they were both ubiquitous and had both clr and eigenvector centrality values surpassing these thresholds. Black dots indicate 
ubiquitous taxa falling below the thresholds while colored dots denote keystone taxa. The taxonomic classification of the keystone taxa is provided 
for each group.
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positive interaction with Pseudomonas (Fig. 6D). The fewer and less robust associations in Varroa mites suggest that Paenibacillus sp. 
may have a more disruptive effect on their microbial community, potentially altering essential bacterial interactions.

3.3.2. Impact on specific bacterial taxa: Escherichia and Rickettsiella
To further assess the effect of Paenibacillus sp. on the local connectivity of specific taxa, we focused on Escherichia, an extracellular 

bacterium, and Rickettsiella, an intracellular bacterium known to interact with host immunity. In honey bees, Escherichia was absent 
from the network of highly infected individuals (Supplementary Figs. S3A and 3B), indicating an interaction with a correlation value 
lower than the lower used threshold (SparCC ≥0.3 or ≤ − 0.3) or a potential loss of this bacterium due to Paenibacillus sp. infection. In 
lowly infected honey bees, Escherichia showed weak correlations with eight taxa (Supplementary Figs. S3C and 3D), suggesting it 
maintains some interactions within a healthier microbial network.

In Varroa mites, Escherichia was associated with less taxa in highly infected mites (six taxa; Supplementary Figs. S3E and S3F) 
compared to lowly infected mites (17 taxa; Supplementary Figs. S3G and S3H). Moreover, stronger correlations were observed with 
key taxa such as Lactobacillus and Carnobacterium in highly infected mites (Supplementary Fig. S3F), and with Spiroplasma, Yersi
niaceae, Morganella, and Bartonella in lowly infected mites (Supplementary Fig. S3H). The reduced connectivity in highly infected mites 
implies that Paenibacillus sp. infection disrupts Escherichia’s role within the microbial community.

Similarly, Rickettsiella exhibited fewer associations in highly infected honey bees (six weak correlations; Supplementary Figs. S3I 
and S3J) compared to lowly infected honey bees (13 associations, including stronger correlations with Morganella and Spiroplasma; 
Supplementary Figs. S3K and S3L). In Varroa mites, Rickettsiella had nine weak correlations in highly infected mites (Supplementary 
Figs. S3M and S3N) versus 25 associations, including eight strong ones, in lowly infected mites (Supplementary Figs. S3O and S3P). 
This pattern suggests that Paenibacillus sp. infection diminishes the connectivity of Rickettsiella, potentially affecting its functions 
within the microbiota.

Comparing the taxa shared between the subnetworks revealed that Escherichia had minimal shared correlations between honey 
bees and Varroa mites, correlating only with Orbaceae in lowly infected groups (Supplementary Table S4). In contrast, Rickettsiella 
shared multiple correlations across hosts and infection statuses, including positive associations with Spiroplasma and negative asso
ciations with Snodgrassella and Enterobacterales in honey bees. In Varroa mites, shared correlations were observed with Staphylococcus, 
Rhodococcus, Rosenbergiella, Clostridia, and Pseudomonas (Supplementary Table S4). These results indicate that chosen minor bacterial 
taxa were less incorporated in the bacterial networks of Paenibacillus highly infected honey bees and Varroa mites.

These findings indicate that minor bacterial taxa like Escherichia and Rickettsiella are less integrated into the microbial networks of 

Fig. 6. Direct neighbors of Paenibacillus within the bacterial co-occurrence networks. The local subnetworks represent bacterial taxa that directly 
correlate with Paenibacillus in honey bees at SparCC values of ≥0.3 or ≤ − 0.3 (A) and ≥0.5 or ≤ − 0.5 (B), as well as in Varroa mites at SparCC values 
of ≥0.3 or ≤ − 0.3 (C) and ≥0.5 or ≤ − 0.5 (D). Clusters and modules containing taxa are differentiated by node color, node size is related to their 
eigenvector centrality. Positive (green) or negative (red) correlations are distinguished by the color of the edges.

Fig. 7. Niche specialization. CLAM graphs represent the taxa of honey bees (A) and Varroa mites (B), both Paenibacillus highly and lowly infected, 
divided according to their niche specialization. Plot show taxa categorized by colors: orange – Paenibacillus highly infected honey bees, yellow – 
lowly infected honey bees, blue – Paenibacillus highly infected Varroa mites, green – lowly infected Varroa mites.
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highly infected honey bees and Varroa mites. The reduced connectivity suggests that Paenibacillus sp. infection may disrupt the in
teractions of these bacteria, potentially affecting their roles in the microbiota.

3.4. Niche differentiation of Varroa and honey bee microbiota infected by Paenibacillus

To further investigate the impact of Paenibacillus sp. on the microbial communities of honey bees and Varroa mites, we conducted a 
CLAM to categorize bacterial taxa based on their relative abundance and specificity to particular host groups. The CLAM analysis 
revealed differences in niche specialization between the microbiota of honey bees and Varroa mites. In honey bees, the microbiota 
comprised fewer specialist taxa compared to Varroa mites (Fig. 7A and B). Specifically, the honey bee microbiota had six specialist taxa 
unique to the highly infected group and only one specialist taxon in the lowly infected group (Supplementary Table S5). In contrast, the 
Varroa mite microbiota exhibited a higher number of specialist taxa, with 13 specialists in the highly infected group and two specialists 
in the lowly infected group (Supplementary Table S5). Paenibacillus sp. was classified as a generalist bacterium in both honey bees and 
Varroa mites (Supplementary Table S5), indicating its presence across different infection statuses and host organisms. This suggests 
that Paenibacillus sp. occupies a broad niche within the hive environment, affecting both hosts but potentially in different ways.

4. Discussion

Understanding the microbiota of V. destructor remains a significant gap in apicultural research, particularly concerning the in
fluence of external microorganisms like Paenibacillus species. This study aimed to explore the impact of Paenibacillus sp. load on the 
bacterial communities of Varroa mites and adult honey bees (Apis mellifera), hypothesizing that Paenibacillus sp. would significantly 
alter the mite’s microbiota but have minimal effect on that of adult honey bees.

Our findings support this hypothesis. Varroa mites with high Paenibacillus sp. loads exhibited significantly lower alpha diversity 
measures and markedly different bacterial co-occurrence networks compared to mites with low Paenibacillus reads. Specifically, the 
microbial networks of highly infected mites were less complex and more vulnerable to perturbations, suggesting a disrupted com
munity assembly. In contrast, the bacterial communities of adult honey bees showed no significant differences in alpha diversity 
between highly and lowly infected groups, and their co-occurrence networks remained relatively stable. This indicates that the honey 
bee microbiota is more resilient to Paenibacillus sp. infection.

Although the specific Paenibacillus species was not identified, the original study reported the presence of P. larvae in some 
experimental honey bee colonies without clinical symptoms of American foulbrood [11]. It is, therefore, highly likely that the detected 
Paenibacillus sp. in our study is P. larvae. This bacterium is known to exist in the spore form within adult bees, remaining inactive and 
not affecting the bees directly [19]. Consequently, we expected minimal impact on the adult bees or their associated bacteria, which 
aligns with our observations. Furthermore, other Paenibacillus species associated with honey bees, such as P. alvei, P. dendriformis and 
P. melissococcoides, are often found in the same environments as Melissococcus plutonius infections and have been identified on larval 
cadavers or hive debris in colonies affected by European foulbrood [20,23,24,26,27]. The effects of P. thymolyticus, P. apis, and 
P. intestini on honey bees and their associated organisms are not fully understood but appear not to be harmful to the bees [21,22].

Nonetheless, we observed that highly infected honey bees exhibited significantly different bacterial beta diversity compared to 
those with low infection levels. This difference in beta diversity is likely due to environmental taxa, which are present in low abun
dance but include a much higher number of species and exhibit greater variability in species representation compared to the stable core 
bacteria. The presence of environmental bacteria can be influenced by several factors, such as the age of the bees—which was not 
controlled for in this experiment—as well as stochastic processes that affect the spread of these bacteria [54,55]. As a result, it is 
difficult to reliably differentiate the impact of Paenibacillus from other factors influencing the beta diversity in the experimental groups. 
This observation may also relate to our finding of a higher number of taxa unique to infected honey bees compared to non-infected 
honey bees. Among the bacterial taxa unique to the Paenibacillus-infected group, only the abundance of Lachnoclostridium corre
lated with Paenibacillus. Other bacteria unique to infected honey bees did not show any correlation with Paenibacillus suggesting that 
factors other than Paenibacillus likely influence the presence and abundance of unique taxa in the infected honey bee group.

Additionally, we found several correlations between Paenibacillus sp. and core and minor bacterial taxa. A similar trend was 
observed by Erban et al., who reported both antagonistic and synergistic relationships between P. larvae and various bacterial taxa in 
adult worker honey bees [56]. The underlying mechanisms by which Paenibacillus sp. affects bacterial communities in adult honey bees 
remain unclear and warrant further investigation. However, we speculate that acaricidal treatments of experimental colonies prior to 
sampling likely influenced the observed bacterial associations in our analyses, as biocidal treatments are known to impact the mi
crobial communities within the hive [57], while the highly durable spores of Paenibacillus sp. are probably unaffected.

In contrast, higher presence of Paenibacillus sp. in Varroa mites caused highly-infected Varroa mites showed significant reduction of 
alpha diversity, considerable decrease of bacterial network measures and network robustness. Significant perturbations in the bacterial 
communities of Varroa mites associated with Paenibacillus sp. may indicate antimicrobial activity of the bacterium in its active stage. 
Many Paenibacillus species, including those associated with honey bees, produce a range of secondary metabolites with antimicrobial 
properties, such as non-ribosomal peptides, lipopeptides, and polyketides [58]. For instance, P. larvae produces paenilamicin and 
paenilarvins, which inhibit the growth of several bacteria and fungi, including Bacillus megaterium, Bacillus licheniformis, Bacillus 
subtilis, Pichia pastoralis, and Fusarium oxysporum [59,60]. Also, different strains of P. alvei have been identified as producers of 
antibiotic compounds effective against both gram-positive and gram-negative bacteria [61–63]. The production of these antimicrobial 
compounds likely suppresses competitive microorganisms, as evidenced by P. larvae-infected larval remnants containing exclusively 
P. larvae culture without other microorganisms [64]. Therefore, the observed reduction in bacterial community in Varroa mites 
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associated with Paenibacillus sp. may be attributed to the antibiotic effects of secondary metabolites produced by this bacterium.
In line with this, we also observed a significant decrease in the eigenvector centrality of ubiquitous taxa in highly-infected Varroa 

mites, though this trend did not apply to the Orbaceae taxon. The presence of Paenibacillus likely did not affect Orbaceae, which 
increased its eigenvector centrality and replaced Snodgrassella as the keystone taxon found in the lowly-infected group. We speculate 
that Paenibacillus may directly or indirectly influence the interaction between Snodgrassella and Gilliamella, a dynamic previously 
observed in honey bees [65], and which may similarly occur in Varroa mites.

Varroa mites have been shown to carry P. larvae spores on their surface and likely within their internal organs [28,29]. However, 
information on the germination of P. larvae inside Varroa mites and the effect of this bacterium on the mite’s biology is currently 
lacking. Since the germination of P. larvae requires specific chemical stimuli such as L-tyrosine and uric acid [66], we speculate that 
Varroa mites may acquire these compounds from the larval body during feeding, potentially enabling P. larvae to germinate within the 
mite. Nonetheless, as the specific Paenibacillus species was not identified in this study, the observed bacterial reduction in Varroa mites 
could also result from the activity of another Paenibacillus, such as P. alvei, which has not been previously reported in association with 
Varroa mites.

While there remains a significant gap in our understanding of the functional role of bacteria associated with Varroa mites, it is 
plausible that these bacteria influence the physiological processes of their host, as demonstrated in various acari [67,68]. Therefore, 
we speculate that the observed reduction in bacterial abundance in Varroa mites associated with Paenibacillus sp. may adversely affect 
the mite. This prompts inquiry into the potential efficacy of bacteria-induced disruption of the mite’s microbiota as a means of 
combating Varroa infestation in honey bee colonies. However, further research elucidating the impact of dysbiosis on Varroa mites is 
needed. Additionally, it is imperative that any potential agents designed to disrupt Varroa-associated microbiota be safe for all 
developmental stages and castes of honey bees, which precludes consideration of honey bee-associated Paenibacillus sp.

5. Conclusions

In this study, we dealt with the impact of Paenibacillus sp. on the microbial ecology of honey bees and Varroa mites while we focused 
on underscoring the complex associations between the pathogen (Paenibacillus sp.), hosts (honey bees and mites), and associated 
microbiota. In summary, this analysis demonstrated significant alternations in microbiota after high Paenibacillus infection indicating 
its disruptive effect on bacterial community of Varroa mites. However, higher Paenibacillus load in the microbiota of adult honey bees 
exhibited greater consistency by presenting the microbial networks more robust than those of Varroa mites. This research, however, 
holds a considerable limitation of acaricide application before the experiment which could have a potential impact on the microbial 
composition of both, honey bees and mites. Despite the limitations, we bring the significant results and valuable insights of this 
innovative study. As it is the first analysis dealing with the impact of Paenibacillus infection load on the Varroa mite microbiota, we 
suggest that future studies should be designed without any pesticide administration, explore the mechanisms of host-pathogen in
teractions and the dynamics of microbial community.
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[15] C. Mouches, J.M. Bové, J. Albisetti, et al., A spiroplasma of serogroup IV causes a May-disease-like disorder of honeybees in Southwestern France, Microb. Ecol. 

8 (1982) 387–399.
[16] A.C. Fogaça, G. Sousa, D.B. Pavanelo, et al., Tick immune system: what is known, the interconnections, the gaps, and the challenges, Front. Immunol. 12 (2021) 

628054, https://doi.org/10.3389/fimmu.2021.628054.
[17] D. Smutin, E. Lebedev, M. Selitskiy, et al., Micro”bee”ota: honey bee normal microbiota as a part of superorganism, Microorganisms 10 (2022) 2359, https:// 

doi.org/10.3390/microorganisms10122359.
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[54] L. Kešnerová, O. Emery, M. Troilo, et al., Gut microbiota structure differs between honeybees in winter and summer, ISME J. 14 (2020) 801–814, https://doi. 

org/10.1038/s41396-019-0568-8.
[55] J.E. Powell, V.G. Martinson, K. Urban-Mead, N.A. Moran, Routes of acquisition of the gut microbiota of the honey bee Apis mellifera, Appl. Environ. Microbiol. 

80 (2014) 7378–7387, https://doi.org/10.1128/AEM.01861-14.
[56] T. Erban, O. Ledvinka, M. Kamler, et al., Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus 

larvae via microbiome analysis, Sci. Rep. 7 (2017) 5084, https://doi.org/10.1038/s41598-017-05076-8.
[57] L.A. Santorelli, T. Wilkinson, R. Abdulmalik, et al., Beehives possess their own distinct microbiomes, Environ. Microbiome 18 (2023) 1, https://doi.org/ 

10.1186/s40793-023-00460-6.
[58] E.N. Grady, J. MacDonald, L. Liu, et al., Current knowledge and perspectives of Paenibacillus: a review, Microb. Cell Factories 15 (2016) 203, https://doi.org/ 

10.1186/s12934-016-0603-7.
[59] Garcia Gonzalez E, S. Müller, G. Hertlein, et al., Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic 

bacterium Paenibacillus larvae, MicrobiologyOpen 3 (2014) 642–656, https://doi.org/10.1002/mbo3.195.
[60] G. Hertlein, M. Seiffert, S. Gensel, et al., Biological role of paenilarvins, Iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen 

Paenibacillus larvae, PLoS One 11 (2016) e0164656, https://doi.org/10.1371/journal.pone.0164656.
[61] Y. Jagadeesan, S. Athinarayanan, S.B.M. Ayub, A. Balaiah, Assessment of synthesis machinery of two antimicrobial peptides from Paenibacillus alvei NP75, 

Probiotics Antimicrob. Proteins 12 (2020) 39–47, https://doi.org/10.1007/s12602-019-09541-w.
[62] B. Alkotaini, N. Anuar, A.A.H. Kadhum, A.A.A. Sani, Detection of secreted antimicrobial peptides isolated from cell-free culture supernatant of Paenibacillus alvei 

AN5, J. Ind. Microbiol. Biotechnol. 40 (2013) 571–579, https://doi.org/10.1007/s10295-013-1259-5.
[63] M. Pajor, Z.R. Xiong, R.W. Worobo, P. Szweda, Paenibacillus alvei MP1 as a producer of the proteinaceous compound with activity against important human 

pathogens, including Staphylococcus aureus and Listeria monocytogenes, Pathogens 9 (2020) 319, https://doi.org/10.3390/pathogens9050319.
[64] L. Bailey, Honey bee pathology, Annu. Rev. Entomol. 13 (1968) 191–212, https://doi.org/10.1146/annurev.en.13.010168.001203.
[65] J. Ludvigsen, A. Rangberg, E. Avershina, et al., Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season, Microb. 

Environ. 30 (2015) 235–244, https://doi.org/10.1264/jsme2.ME15019.
[66] I. Alvarado, A. Phui, M.M. Elekonich, E. Abel-Santos, Requirements for in vitro germination of Paenibacillus larvae spores, J. Bacteriol. 195 (2013) 1005–1011, 

https://doi.org/10.1128/JB.01958-12.
[67] J. Zhong, A. Jasinskas, A.G. Barbour, Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness, PLoS One 2 (2007) e405, 

https://doi.org/10.1371/journal.pone.0000405.
[68] Y.-X. Zhu, Y.-Y. Zhang, X. Zhang, X.-Y. Hong, Antibiotics and temperature alter microbiome assembly and host fecundity in spider mites, Syst. Appl. Acarol. 

(2023), https://doi.org/10.11158/saa.28.1.5.
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